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By Harold Crate and Hsu Lo 

SUMMARY 

An investigation w a s  made t o  determine the e f fec t  of longitudinal 
s t i f f ene r s  on the buckling load of long f l a t  plates  under shear. 
Tests were made of long f l a t  plates reinforced by one and by two 
longitudinal s t i f feners .  A theoret ical  study of the buckling load of 
such plates, made by the energy method, is  presented i n  the appendix. 
The r e su l t s  of the  t e s t s  and the  r e su l t s  of the  theory are compared 
and are  found t o  be i n  fa i r  agreement. 

c 

INTRODUCTION 

Buckling of the s t ressed skin of a w i n g  under applied shear 
loads r e su l t s  i n  a reduced tors ional  s t i f fnes s  and a reduced aero- 
dynamic fairness  of the w i n g .  Because there is danger of f l u t t e r  o r  
a i le ron  reversal  occurring i f  the tors iona l  s t i f fnes s  of the wing is  
not maintained up t o  high loads and because high-speed pull+uts may 
be d i f f i c u l t  o r  impossible if reduced aerodynamic fairness  causes 
premature separation of the flow over the wing, it is  desirable t o  
determine the shear s t r e s s  at  which the reinforced skin of the wing 
buckles. The problem is of par t icular  importance i n  the case of 
h i g h p e e d  airplanes which are  normally subject t o  f l u t t e r  and 
control problems. 
problems i n  high-speed f l i gh t ,  therefore, a solution t o  the problem 
of the shear buckling of a type o f  panel l i k e l y  t o  be used in  the w i n g s  
of f a s t  airplanes has been sought. 

With a view toward eliminating some o f  the  

The t h i n  w i n g s  needed f o r  big-peed airplanes have thick skins 
and several  shear webs. The wing panels are  narrow and, therefore, 
are reinforced by re la t ive ly  few s t i f feners .  Accordingly, t e s t s  were 
made t o  determine the shear buckling load of long  plates  reinforced 
by one and by two longitudinal s t i f feners .  
solution of the problem f o r  any mxnber of s t i f f ene r s  w a s  made. The 
r e su l t s  of the t e s t s  are  presented herein and are compared with the 
r e su l t s  of the theory. 

I n  addition, a theore t ica l  

The symbols are  defined i n  the appendix. 
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TEST SPECIMENS 

The specimens tested were flat plates with a length-width ratio 
of 8 reinforced by longitudinal stiffeners. 
the test specimens is shown in figure 1, and the specific dimensions of 
the individual specimens are listed in table I. 

The general construction of 

Two groups of specimens were tested. Each specimen of the first 
group had one stiffener riveted along the longitudinal center line of the 
panel. Each specimen of the second group had two longitudinal stiffeners 
of equal size riveted to the panel in order to divide the panel into three 
bays of equal width. The dimensions of the specimens of the first group 
were nominally 6 inches wide and 48 inches long. 
specimens of the second group, the width was made 7 1  inches in order that 
the attached legs of the stiffeners would not cover a large part of the 
width of the bays ,  and the length was increased to 63 inches in order that, 
at the same time, the length-width ratio should remain at a value of 8. 

For the dimensions of 

8 

The webs of all specimens were of nominally 0.032-incbthick 
24s-T aluminuwalloy sheet. The stiffeners were of 24s-T aluminuwalloy 
sheet bent to the shape of angles. Two angles were used for each stiff- 
ener, one on each side of the web, to provide symmetry about the plane of 
the web. The thickness and leg dimensions of the angles were varied to 
produce the bending stiffness desired. 

The short edges (ends) of the specimens were reinforced with angles. 
These angles were of uniform size for all specimens with one stiffener and 
were proportionally larger and of uniform size for all specimens with two 
stiffeners. These end angles were so designed that there was a margin of 
safety against failure of the angles before buckling of the web occurred. 

TEST APPARATlTS AND TESTING PROCEDURE 

The specimens were tested in a jig as shown in figure 2. 
this jig distributed the applied load along one edge of the web, and the 
other part picked up the reaction from the opposite edge of the web and 
transferred this reaction to a heavy supporting structure. 
of the jig were essentially the same, and each part consisted of two 
heavy steel bars bolted to each side of a steel plate which protruded 
from between the bars and to which the specimen was riveted. 
crosssectional area of the bars insured that the distribution of load 
was essentially uniform over the full length of the web. 

One part of 

Both parts 

The large 

A portable hydraulic jack which indicated loads with standard 
testing-machine accuracy of on-half of 1 percent, was used to apply the 
load to the specimens. 

Two dial gages graduated to 1/10000 inch were used to measure the 
shear displacement of the loaded edge of the sheet relative to the fixed 
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. 

edge. 
of the specimen. 

These gages were mounted on each side of the web at the midlength 

The test procedure was as follows: 
several increments to about 25 percent of the estimated buckling load, and 
the dial gages were read after each increment of load had been applied. 
If the dial-gage readings indicated equal movement on both sides of the 
web up to the full preload, it was assumed that the jack was properly 
positioned under the specimen and the load was released. 
reapplied and the dial-gage readings were taken at a number of loads until 
buckles were clearly visible in the web. 
frequently until the specimen could sustain no further increase in load. 

The specimen was preloaded in 

The load was 

Readings were then taken less 

ANALYSIS AND DISCUSSION 

Theoretical critical stresses.- The theoretical study of the shear 
buckling load of a long flat plate, reinforced by longitudinal stiffeners, 
with shear load acting at the longitudinal edges is presented in the 
appendix. 
are investigated - simply supported edges and clamped edges. 
of the theoretical study are summarized in figure 3. 
restraint condition, three separate curves are shown. 
pond to the plate reinforced by one stiffener, by two identical equally 
spaced stiffeners, and by a large nuniber of identical equally spaced 
stiffeners. The three curve8 a r e  essentially one with a maximum deviation 
of approximately 2 or 3 percent. The appendix points out that the curve 
for a large number of identical equally spaced stiffeners cam be used to 
represent, within 2 or 3 percent, the solution of' the plate reinforced by 
any number of identical equally spaced stiffeners. 

Two different restraining conditions at the longitudinal edges 
The results 

The curves correa- 
For each edge 

Each curve in figure 3 has an upper limit corresponding to the crite- 

In the case of a simply supported plate with 
rion that the plate buckles in such a way that the stiffeners can be 
replaced by simple supports. 
one stiffener, for instance, the shear buckling coefficient 
increased beyond approximately 21.4 by increasing the stiffness of the 
stiffener . 

k cannot be 

Experimental - __ buckling - - data.- - - In figure 4 are sham typ5cal results of 
a test in the form of a curve of shear deformation, as measured by the 
dial gages, plotted against load on the specimen. 
curve is linear (i.e., deformation is proportional to load) and corres- 
ponds to a constant shear stiffness for the web. The second part above 
the linear part shows a gradual increase in the rate of deformation of the 
web with load (i.e., a gradual decrease in the shear stiffness of the web). 
Since, for all specimens tested, the stress at which the second part of the 
curve started was well below the yield stress for the web material in 
shear, it is reasonable to assume that the change in shear stiffness of the 
web was due to buckling. 
gradually, it is difficult to select consistent buckling loads from plots 
such as figure 4; and in order that the selection be confined to a 

-__ 

The first part of this 

Since, however, the shear stiffness changes very 
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reasonably short range of load, the effect of a change in the shear 
I stiffness of the web was accentuated in the folluwing manner. 

Method for defining experimental critical stress.- For each specimen 
tested, the deviation of the load-deformation curve from an extension of 
the linear part of that curve was computed. 
plotted against the load on the specimen. 
against deviation squared, arranged in the order of increasing stiffness 
ratio 
figure 5(b) for two-stiffener specimens. Each of the curves of the figure 
exhibits a knee which starts as soon as the deformation of the specimen is 
no longer proportional to the load. The buckling load corresponds to some 
point on the knee of the curve of load against deviation squared. 

This quantity was squared and 
The resulting plots of load 

are shown in figure 5(a) for pnestiffener specimens and in y ,  

Comparison of theory and experiment.- A theoretical critical buckling 
load Pcr, based on the buckling coefficient from figure 3 and on the 
dimensions listed in table 1, is marked on each test curve of figures 5(a) 
and 5(b) in order to provide a means of direct comparison between test 
data and theory. The subscripts s and c are used to denote whether 
the edges are simply supported or clamped. It will be noted that for 18 
of the 20 specimens the start of the knee of the test curve lies within 
or very close to one edge of the range bracketed by the two extreme 
values ( Pcr) a and ( Pcr)c* , 

Maximum ________ stresses.- .. . The m a x i m  load sustained by each specimen is 
For both one-etiffener marked on the curves of figures 5(a) and 5(b). 

and two-stiffener groups of specimens, the load at failure tended to 
increase slightly with increase in the stiffness ratio 7. 
failure ultimately occurred by twisting and collapse of the angle across 
the top edge of the specimen. Since this top angle was of one size for 
all one-stiffener specimens and of another size for all two-stiffener 
specimens, the size and proportions of the longitudinal stiffeners must 
have affected somewhat the maximum load carried by the specimen by 
restraining the top angle from twisting. 

In all cases, 

CONCLUDING REM.KKS 

The theoretical shear buckling coefficient for a long flat plate 
reinforced with any number of longitudinal stiffeners, of equal stiffness 
and equally spaced across the plate, can be obtained from a single curve 
for each of the edge conditions - simply supported or clamped. The test 
results were found to be in fair agreement with the theoretical studies. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., December 4, 1947 
~ 
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A P P E N D I X  

T H E O R E T I C A L  A N A L Y S I S  

Two solutions applicable t o  the problem of the shear buckling 
of a f l a t  p la te  reinforced by longitudinal s t i f f ene r s  a re  presented 
i n  references 1 and 2. 
p. 360) is an approximate solution f o r  the case of simply supported 
edges and is  obtained by the energy method. 
used w a s  l imited t o  a single half sine wave across the width of the 
p la te  and did not completely sa t i s fy  the conditions of simply 
supported edges along the length of the  plate .  The solution con- 
sequently yields  buckling loads which a re  too high and unconsekative. 
The second of the  two solutions (reference 2) presents r e su l t s  f o r  
the shear buckling of a long orthogonal-anisotropic (of ten cal led 
orthotropic) f l a t  plate  with e i ther  simply supported o r  clamped 
edges. These results were obtained by solving the d i f f e ren t i a l  
equations of equilibrium of a s l igh t ly  deflected p la te  element. 
is reasonable t o  expect that t h i s  second solut ion would be applicable 
t o  the  case of a p la te  reinforced by numerous closely spaced and 
uniformly spaced longitudinal s t i f feners .  

The first of these two solutions (reference 1, 

The deflection function 

It 

It was deemed desirable t o  obtain a more exact solution than 
given i n  reference 1 f o r  a long f l a t  p la te  reinforced by only a 
few longitudinal s t i f f ene r s  and t o  obtain some idea of the extent t o  
which the solution f o r  an orthotropic p la te  i n  reference 2 i s  
applicable t o  a p la te  with a f i n i t e  number of longitudinal s t i f feners .  
Two e n e r a  solutions were therefore obtained. 
f o r  a plate  with a few o r  a f i n i t e  number of s t i f f ene r s  and the 
second solution, f o r  a p la te  with a very large number of ident ica l  
closely spaced s t i f feners .  
assumed t o  have some f lexura l  s t i f fnes s  but zero tors ional  s t i f fness . )  

The first solut ion w a s  

( I n  both cases the s t i f f ene r s  were 

Two different edge conditions w e r e  investigated. I n  the case of 
simply supported edges, the in f in i t e  s e r i e s  type of deflection function 
introduced by Eromm (reference 3) w a s  used. 
provides simple support a long the edges but a l so  provides a complete 
s e t  of functions which describe the shape of the deflected surface 
a t  any section across the plate.  Also, i n  the case of clamped edges, 
a complete s e t  was used. With e i ther  function, it is  possible t o  
approach as closely as desired the exact solution t o  the problem. 

This function not only 
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SYMBOIS 

width of p la te  

distance from x-axis t o  i t h  s t i f f e n e r  

s t i f f ene r  spacing 

s t i f f ene r  under consideration 

shear buckling coeff ic ient  

in tegra l  number of half waves across p la te  

thickness of p la te  

deflection i n  z d i r e c t i o n  

deflection of p la te  i n  z-direction 

deflection of s t i f f ene r  i n  z-direction 

coordinate axes 

parameters used i n  def lect ion function of p la te  

flexural s t i f fnes s  per un i t  width of p l a t e  

Young's modulus f o r  p la te  material 

bending f l e x i b i l i t y  of s t i f f ene r  

bending f l e x i b i l i t y  of the  i t h  s t i f f ene r  

resul tant  shear force per unit length act ing i n  middle 
plane of plate  

number of bays across plate  

number of s t i f f ene r s  
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Y 

'on 

8 Jmp 

x 

work done by applied shear 

e n e r a  stored i n  buckled plate  

e n e r a  stored i n  bent s t i f f ene r s  

r a t i o  of half wave length i n  x-direct-Jn t o  i~ 

plate  (t) i t h  of 

r a t i o  of s t i f fnes s  of single s t i f f e n e r  t o  s t i f fnes s  
of a s t r i p  of p l a t e  of width d when a l l  r i b s  a re  

ident ical  and equally spaced 

r a t i o  of s t i f fness  of i t h  s t i f f ene r  t o  s t i f fnes s  of 

eonecker  de l ta  (1 i f  n = 0; 0 i f  n f 0) 

symbol representing the sum of a trigonometric se r ies  

which takes the value 1 i f  i s  even and if 

m+p is not even, -1 i f  m+p is  even and i f  
J 

J J 
- 
J is not even, and 0 f o r  all other cases 

parameters used in  deflection function of i t h  s t i f f ene r  

half wave length i n  x-direction 

Poisson's r a t i o  f o r  plate material  (taken as 0.3) 

Lagrangian multipliers 
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G = ( l + m p  2 2)* 

%p = $$3(m7 a) = 0 when m k p is even 

m c i  P*C i Ti sin - sin - b b 
- %p - 

i=1,2,3, . . . 

00 

s =) - ms, 
m = l  

NACA TN No. 1589 
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2mnc i 03 

T i  = m ( - l ) x  cos - b 
m=l 

2mllc j 
sin - -ci e;m cos - w i j  = b b 

2mflci 2mncj 
sin - X i 3  = 2 Rm s in  - 

b b 
m=l 

7 
J T o  = - 

P i  Pi’  = 

Subscript: 

c r  

m = l  

c r i t i c a l  

9 
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SIMPLY SUPPORTED EDGES 

Fin i te  N u m b e r  of S t i f f ene r s  

The deflection function 

v = s i n  s i n  + cos E> B, sin mny_ 
A )c 

m = l  m = l  

i s  a s s m d  to express the buckled shape of the plate .  
system is shown i n  f ig .  6 . )  The integer m i n  the def lect ion function 
represents the number of half waves across the plate,  and the 
parameters and are aseociated with the amplitude of the 
mth wave. The width of the plate  i e  b and the half w a n  length of 
the buckle in the x-direction i e  X. 

(The coordinate 

In order t o  f ind the energy etored i n  the buckled plate  Vp, 
the energy etored in the bent s t i f f ene r s  V,, and the work T done 
by the applied she&, the 

r 

following equations were used : 

which is equation (199) of reference 1, and where 
s t i f fnes s  per unit width of p la te ;  

D is the flexural 

where E i I i  is the f lexural  r i g i d i t y  of the i t h  s t i f f ene r  and ci i s  
the distance of the l t h  s t i f f ene r  from the edge of the p la te  (only 
bending energy of the s t i f f ene r s  is considered and the sumation is 
extended over a l l  the s t i f f ene r s  on the plate); and 
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T 

which is obtained from 
is  the resultant shear 
tudinal  edge of the plate.  

equation (201) of reference 1, and w h e r e  Fxy 
force per uni t  length acting along the longi- 

It w a s  necessary to  consider only the energy and work over one 
half  wave length along the length of the plate  since the var ia t ion 
I n  deflection i e  sinusoidal i n  that  direction. 

The deflection function was substituted i n  equations ( 2 )  fo r  
energy and work, and the 
the following resu l t s :  

D 
vP = F 

indicated integrations were performed w i t h  

w w  

nrp 
m=l p = l  - P  

where a value f o r  T ex ie t s  only when m 2 p is odd. 

When the buckling load is reached, the s t ructure  is i n  neutral  
equilibrium and is  capable of maintalning e i the r  the f l a t  o r  buckled 
form. Mathemtically, th€s  neutral  equilibrium can be expressecl by 
se t t i ng  the work done by the external load i n  deforming the plate  
equal t o  the sum of the energies stored i n  the buckled plate  and i n  
the bent s t i f feners ;  that is, 

T = V  +V, P 

From t h i s  equation, the following c r i t i c a l  shear force per unit length 
of the plate  i 8  obtained: 
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Considerable simplification in the form of equation (4a) can be 
made by use of the following substitutions: 

sin 3 = NP 
I 

i=l 
b 

= 2) yi sin - 
b 

Equation (4a) now reduce6 to 

c 



NACA TN No.  1589 13 

The wave pat tern which causes the shear buckling coeff ic ient  k to 
be a minimum ie obtained by di f fe ren t ia t ing  equation (4b) with respect 
t o  each of the parameters Am and Bm in turn and se t t i ng  each of 
the derivative8 equal t o  zero. Two sets of l i nea r  algebraic equations 
i n  and Bm r e su l t .  Thus 

where 

2 =-%m 
8W3 mp 

%p = - m2-p  

and Mmp = 0 when m f. p is even. 

Neither equation (5a) nor equation (5b) contains a constant term; 
therefore,  i n  order that the paramters  k, and B, have values 
d i f f e ren t  from zero (i .e. ;  the plate takes a form other than f l a t ) ,  
the determinant in the coefficients of the and Bm's must be 
equal t o  zero. The complete determinant is i n f i n i t e  i n  extent and 
may be represented i n  the following manner: 
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For example, from determinant (56) there i s  obtained fo r  the 
first, approximation the following subdeterminant : 

1 *12 + P * 1 2  % + E22 I 
The expansion of determinant (?e) is  

(Kl + Nll)(K* + N2J - N12 2 - 4 2  2 = O 

Equation ( 6 )  represents a s t a b i l i t y  c r i t e r ion  for  the shear 
buckling of a long p la te  with any number, epacing, and s ize  of s t i f f ene r s  
along the plate .  I f  the number, spacing, and s i z e  of s t i f f ene r s  are 
b w n ,  the proper values of may be substi tuted i n  equation ( 6 )  
and the resul t ing equation solved f o r  k o r  7 .  5 

Special  analysis of determinant f o r  ident ical  equally spaced 
stiffeners.-  Generally, the s t i f f ene r s  on a plate  are  of uniform 
s ize  and are uniformly spaced. Some simplification in the foregoing 
solution may then be introduced. 

In generel, 

a 
%e = .> T i  s i n  

i =1 

Pnci 
s i n  - mci 

b 

If the stiffness r a t i o  yi is the 88138 f o r  a l l  s t i f f ene r s  and J is 
the number of bays across the plate ,  then 

J 
%) = ai> s i n  yi; s i n  b J  

i=o 

c 

, 



where 

J n - p  i s  even mci if m + P  - is not even 6 , * = l  i f  - J J 

= -1 if m+p i s  even and if m--p IS not even J 
mP J J 

= 0 i n  a l l  other cases 
DP 

(See reference 4 f o r  derivation of this sum.) 

The determinant (5c) may now be rewrit ten in  term of gJ 
mP 

ra ther  than N 
composed en t i re ly  of zeros since tjJmP has no value i f  IL 2 p is 
odd. The upper l e f t  and lower right quadrants then remain as 
equivelent factors.  
of determinant (5c)  appears as follows: 

The upper r igh t  and lower l e f t  quadrmts w i l l  be mP 

The rewritten upper l e f t  quadrmt (one fac tor )  

. . .  YSJ 13 5 4  

J K4 + r5 I& M14 M34 
. 

S!nce the %*-terms containing the sheps buckling coeff ic isnt  
appear i n  each z o l u w ,  the order i n  k of th3 expFnsion of deter- 
minant ( 7 )  i s  the same as the order of the d e t e m n z n t  i t s e l f .  

k 

A study of SJq a n d  d e t e d n e n t  ( 7 )  shows tha t  the velus 
of BJq a l ternates  end recLirs a t  intervals  Flnd thnt 211 the valce6 
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In equations (8) t o  (9) the value of y is a function of k 
and B .  For any of theme equations, 7 can be computed f o r  various 
values of f3 at a prescribed value of k. Ths maximum value of y 
f o r  the prescribed k can be obtained from a p lo t  of y against  8 .  
C u r v e s  of k plot ted against y ,  as shown i n  figure8 3 and 7, are 
obtained by repeating the procedure f o r  other values of 
appear8 from figure 7 that the third-approximation solution is 
accurate enough and the solution of the determinant of higher orders 
is not needed. 

k. It 

Large Number of S t i f feners  

If all.the s t i f f ene r s  are ident ica l  and m e  equally 8paced, the 
condition of uniform longitudinal s t i f fheas  a t  any point acroaa the 
width of the plate  is approached 88 the number of s t i f f ene r s  is 
increased. Consequently, fo r  a very large number of s t i f feners ,  the 
bending energy stored i n  all the s t i f f ene r s  may be erpreesed 88 

The work done by the applied shear T and the energy etored i n  the 
plate  Vp 
f o r  a f i n i t e  number of s t i f feners .  Following the samb procedure as 
that used f o r  the caee of a f i n i t e  number of s t i f feners  - t h a t  is, 
equating energy and work, solving f o r  the c r i t i c a l  load, se t t i ng  the 
derivatives with respect t o  each of the unlauwn parameters 
and equal t o  zero, eet t ing a f i n i t e  detsnninant i n  these 
parambtere equal to  zero, and solving i n  t h i s  case f o r  the shear 
buckling coefficient k - r e su l t s  i n  the following equation: 

are given by the same expressions used i n  the development 

Equation (10) was obtained by a second approximation, t h a t  is, 
by limiting the deflection function t o  one, two, and three half waves 
across the width of the p la te .  
presented, there is found f o r  each value of 
a value of B which wl11 make k a minimum. A c u m  of k plotted 
against 7 obtained from equation (10) is  shown i n  figure 8. For 

By a graphical procedure, as previously 
y ,  choeen i n  equation (lo), 

c 



. 
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purposes of ccmparison, there i s , a l s o  plotted i n  the s a w  figure the 
r e s u l t s  of the exact solution f o r  an orthogonal p la te  from reference 2. 
The second approximation is suff ic ient  to give excellent agreement 
w i t h  r e s u l t s  obtained from the exac t  solution. 

Although equation (10) is obtained f o r  the case of a very large 
number of stiffeners, it actual ly  represents the second-pproximation 
solut ion f o r  a l l .  cases of three o r  mre St i f feners .  "his f a c t  can be 
seen from equation ( 7 )  in  that the second-pproximtion solution of 
equation (7)  f o r  a l l  cases of three o r  m r e  s t i f f ene r s  gives the s a m  
r e s u l t s  as  equation (10). 

CLAMPED EDGES 

F in i te  Number of St i f fenere  

The problem is more involved In the ca8e of clamped edges. A 
di f fe ren t  deflection flrnction Is a s s w d  pad the Lagrangian mult ipl ier  
method (references 5 and 6 )  I s  used. 
shown i n  figure 9, the deflection function fo r  the p la te  is aseumed 
t o  be expressed by 

With the new coordinate system 

(11) 
am + cos Fg Bn cos - 2nny 

b w = s i n  %I s i n  - P x b 
m = l  

T h i s  expression is a complete s e t  of functions synunetric with respect 
t o  the or igin.  Since the plate i s  in f in i t e ly  long, the expression of 
def lect ion by a complete set of a n t i s v t r i c a l  functions w i l l  give 
the same r e su l t s .  In order t o  ensure zero deflection and zero slope 
a t  the edges, the expression (equation (ll)) is  subject to the 
following restraining conditions : 

wp 

n=O 

m=l 
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A set of new deflection functions is used f o r  the longitudinal 
s t i f feners .  For the i t h  s t i f fener ,  

( i  = 1,2, ... N) EX 
+ r i  - 

A 

c 

where N is number of s t i f feners .  In  order that the deflection of 
the p la te  d i rec t ly  under the s t i f f ene r  and the deflection of the 
s t i f f ene r  itself be the 8 e m ,  the expression8 f o r  

are subject t o  the f o l l o w i v  restraining conditions: 
and Wi wp 

m 
2 m q  

4 -1- sin - = o 
b 

( i  = 1,2, .. .N) 
m = l  

where ci is the distance from the x+xis to the i t h  s t i f f ene r .  

When the expressions f o r  wp and we are substi tuted i n  
equations ( 2 ) ,  the energy expressions become 

m 

m = l  
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where 

x p = -  
b 

*i *i 
T i  = Dd 

B O n = 1  i f  n = O  

The total energy V = Vp + V, - T is  then t o  be minimized. D u r i n g  
the minimizing process the rest ra ining conditiona, equations (12)  
and ( 141, can be ea t i s f l ed  by the Lagrangian m l t i p l i e r  method. 
reference 5 .  ) 

(See 

The following notation is used f o r  the Lagrangian m l t i p l i e r s :  
v and B correspond t o  equations (12a) and (12b), respectively; 
fir and correspond t o  equations (14a) and (14b), respectively. 

Then the function t o  be minimized is 

m m 

b 
i =1 n=O 

If  the function f is minimized with respect  t o  each o f  the 
parameters Am, Bn, Ai, and ri i n  turn, the followin&: expressions 
c m  be obtained: 
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- FXyn2d, - ~ X I I ( - ~ ) ~  + af - =  
b 

i =1 a4n 
= o  ( m  = 1,2,...0p) 

af - = q*(l + 6on)Bn - Fxyn 2 "An - V ( - l ) "  

a n  

&XCi +pqi cos - b = 0 ( n  = 0 ~ 1 ~ 2 ~ . . . ~ )  (18) 
i =1 

= o  ( i  = 1,2, .. .N) 

af - = "Yi(2ri) - *f 

(1 = l Y 2 ,  ... N) = o  

Equation (18) can be separated into the follovlng par t s :  

4FBo - v +  f- $-I = 0 (corresponding to n = 0) (21a)  
i =i 

00 

- 0 (21b) q t B m  - F x y n k  - V ( - l ) m  + $1 cos - 2mnci - b 
i =1 

(E = l,?, . .P) 

Solving equation (17) and (21) togsther m d  using the notations V'  = - V 
\k 2F' 
2F 

'' and J'1* = 1 result in the followfng expressions E E' = - 
2F' 

for the A's and B'e: 
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->*; COB - b 1 N 
B, = R V * ( - l )  .i i=l  

N 
- '>E $1' 

1 Bo = - v *  2 2 
I =1 

where 

If equations (19) and (20) are substituted in equation8 (lk), the 
following expressions result: 

a r r c  

b B, COS - - - 0  (1 = 1,2, .. .N) ( 21r-0 ) 
n=O 
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If A, and Bn ae given by equations (22) and (23) are put into 
equations ( 12) and (24), the following set of simultansous equations 
is obtained with v ' ,  E', gig, and S i o  a8 the variables: 

( J  = 1,2, ...R) 

Iv 19 
V'(-BJ) + 6 ' (4J) +> #&J) +> $1' (ZiJ) + *J'($) = O (25d) 

I =1 i =l 

(J = 1,2, ..J) 

where 

R = L + x R m  2 
m = l  

G = 2 &Rm 
m=l 



NACA TN No. 1589 

~ 

27 

0. 2mc -?i”l = x j i  X i j  => Rm s i n  - -ci s in  
b 

m = l  

- z j i  j 
2 m m  m 

cos - - b 5 
m=l 

s = > l l f j m  

m = l  

m=l 

m=l 

W 2mci 2mcj  
s i n  - b W i J  = 2 s, C08 - b 

m=l 

There are 
equations and there are 2N + 2 unknowns, namsly, v o ,  € ( ,  plot 
d2(, ...&(, $f1*, \ L 2 ( ,  ... and I n  order t o  ensure a 

nonvanishing solution for these LagrangIan m l t i p l i e r s ,  the following 
determinant muet be zero: 

‘2% + 2 equation8 i n  the preceding s y s t e m  of 8imultaneous 
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R S  -H1 4 2  4 2  -p4 4 4  

s c  -1 4 2  4 2  4 4  -T4 

'14 '41 

-p2 4 2  w12 x22+(T,  1 *22 '42 w42 

w22 222 + - 1 w24 '42 byo 'H2 -T2 212 

'P4 4 1 1  $114 %4 w24 
1 x44 +I Wh4 

-+YO 

. . .  

. . .  

. . .  

... . 

. . .  

. . .  

. . . . 

= 0 (27) 

Deterninanf, ( 2 7 )  i s  now of the I'? + 2 order. For the part icular  cases 
of on3 md two lmgi tudina l  s t i f feners ,  the corresponding determlnan5s 
are  as follows: 

For one stiffener 

For two s t i f feners  

R 

S 

-p2 

-E2 

R 

S 

-H1 

S 

G 

-L2 

-T2 

- =1 

- *1 

S 

G = o  

4 2  4 2  

4 2  4 2  

1 
v22 x +  

*2 47, 
1 

w22 222 + 

- 0  
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In the case of a 
8 t l f f l l 8 S S  and equally 
bending energy stored 
i n  the case of simply 

I n  determinants (27) to ( W ) ,  each element i s  an in f in i t e  s e r i e s  
consisting of functions of k and P. For each of the determinrtn';s, 
yo can be computed f o r  various values of p at  a prescribed value 
of k. A maximum value of yo  f o r  t h l s  prescribed. k can be 
obtained by plo t t ing  70 against P. A number of these maximum 
values of yo corresponding to various values of tM8  prescribed k 
can be obtained. Instead of plott ing k against  yo, k w a s  
plot ted against 
edges, where y = JY, and J equals the number of bays in to  which 
the p la te  i s  divided by the s t i f fenere .  Thus, J = 2 f o r  one 
s t i f f ene r  and J = 3 f o r  two s t i f feners .  The advantage of such a 
p lo t  is that the various curves for differen5 numbers of s t i f f ene r s  
become almDst coincident. (See f i g .  3 . )  

y ,  9s was done f o r  the case of simply supported 

I f ,  now, the 
the p l s t e  i s  
obtained f o r  

Large Number of S t i f feners  

very large nuniber of e t i f f snere  of equal 
spaced across the width of the pls te ,  the 
i n  the s t i f feners  may be expressed, j u s t  as 
supported edges, as follows: 

sam deflect ion f'unction as given by equation (11) fo r  
used f o r  the s t i f feners ,  the following expression Is 
the bending energy stored i n  the s t i f feners :  

There i s  no change of expressions i n  V axl T. Of course, since a 
separate deflection function f o r  the s t i f f ene r s  i s  no lmger used, 
there i s  no need fo r  the rest raining conditions of equat ims ( 1 4 ) .  
The function to be min!mtzed is 

P 

W 00 
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If the s a m  s t e p s  are followed as before, the following determinantal. 
equation is found t o  be the condition fo r  the existence of nonvanishing 
solutions f o r  the Lagrangian multipliers:  

p m%,' 
m = l  

Rm' 

'm' 

fe %le 

m = l  

I(;m'+ Y 

= o  

I n  determinant (32), each element contains 811 i n f in i t e  s e r i e s  of 
functions of k, y ,  and 8 .  For prescribed values of both y and 8 ,  
several  values are assigned f o r  k and the corresponding values of the 
determinant can be determined. I f  the values of the determinant are 
plotted againet k, one value of k can be found which makes the value 
of the determinant vanish. T h i s  part icular  value of k is cal led b. 
Now, i f  the value of 8 is  changed (whlle the value of y remains 
the sam~), the corresponding value of k, is  a l so  changed. There 
exists a cer ta in  8 which makes the value of bo a minimum. This 
minimum value of ko is the c r i t i c a l  ahear buckling coeff ic ient  k 
corresponding t o  the prescribed value of y .  I n  a similar manner, 
other  c r i t i c a l  shear buckling coeff ic ients  can be determined for other 
prescribed values of y .  Finally,  a curve can be obtained with k 
plotted against y .  This curve is  presented i n  figures 3 and 8. I n  
figure 8, the exact solution f o r  an  orthotropic plate  from reference 2 
vas a l so  plotted f o r  comparison. 

From the r e su l t s  obtained i n  the case of simply supported edges, 
it i s  believed tha t  the curve obtained f o r  a large number of ident ical  
equally spaced s t i f f ene r s  represents the solution fo r  a l l  cases of 
three o r  mre s t i f feners .  
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In the foregoing analysis it is seen that fo r  both simply supported 
and clamped edges a determinant i s  obtained f o r  the determination of the 
shear buckling coefficient k. I n  the case of simply supported edges, 
the usual energy method w a s  used and the determinant has been solved by 
first, second, and th i rd  approximations. Thsy converge very f a s t ,  
however, as may be Judged from the r e su l t s  of the solution for  one 
s t i f f ene r .  
mation solution f o r  a large number of s t i f f ene r s  is suf f ic ien t  to give 
excellent agreewnt with resu l t s  obtained from referense 2. In  the 
case of clamped edges the Lagrangian multiplier method was used and 
the solution of the determinant i s  exact. If enough terms in  each 
i n f i n i t e  se r ies  are taken, the solution can be made to  any desired 
accuracy. 

(See f ig .  7.) Also, f igure 8 shows that the second-approxi- 

. 

Curve8 of the 8tiffneSS factor y plotted against the sheax 
buckling coefficient k for  one central ly  located s t i f fener ,  two 
ident ica l  equally spaced stiffeners, and a large number of ident ical  
equally spaced s t i f feners  are  shown i n  figure 3 f o r  both eimply 
supported edges and clamped edges. "he curve for  a large number of 
ident ica l  equally spaced s t i f feners  represents the solution for  a l l  
case8 of three or  m r e  s t i f feners .  Since the curves of figure 3 do 
not depaxt from one another by mre than about 2 or  3 percent over 
the range shwn, prac t icabi l i ty  would d i c t a t e  the use of the curve 
fo r  a large number of ident ical  equally spaced s t i f f ene r s  t o  predict 
the buckling load f o r  a plate w i t h  any number of s t i f feners ,  provided 
the buckling coeff ic ient  80 obtained is not higher than could be 
obtained by replacing the Stiffeners by simple supports. 
of the c r i t e r ion  Just  stated,  it is apparent from figure 3 that i n  
the case of a simply supported plate reinforced with a single s t i f f ene r  
no fur ther  increaee i n  the shear buckling coeff ic ient  
obtained by increasing y beyond about 2000. Similarly, it is seen 
that fo r  the case of a simply supported plate  reinforced by two 
ident ica l  equally spaced s t i f feners  no fur ther  increase i n  the shear 
buzkling coeff ic ient  k can be obtained by increasing y beyond 
about 45,000. 

On the basis 

k can be 
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Plate  
thicknsss 9 

t 
( i n . )  

Plate  
width, 

b Specimen 

( i n . )  

S t i f f -  
plate S t i f f -  S t i f f -  ener 

length, m e r  ener thick- 7 = E1 - 
height width Dd 

( in* )  ( i n . )  ( i n . )  ( i n . )  
I 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13  
14 

6 .oo 
6.02 
6 .oo 
6 .oi 
5 -99 
6 
6 .oo 
5 -96 
5.98 
5.95 
6 .oo 
6 .oo 
6.06 

6.04 

35 

TABLE 1 

DIMENSIOMS OF SPECIMENS 

One-stiffener specimena 

0.0340 
-0334 
00337 
=0330 
.0325 
00334 
.0326 
eo327 
-0313 
.0316 
-0315 
00315 
.0312 
90330 

48.00 

48.07 
48.12 
48.09 
48.00 
48.07 
48.06 
48 .OO 
48.02 
48.04 
48.05 
48.03 

47 8 8  

48.02 

----- 
o .185 

.300 
305 

.420 

.510 
0550 
550 

.622 

.581 

.623 

.668 

.665 
-985 

Tv+stiffener specimens 

-- 
---e -  

0.31 
315 

.290 

.460 
385 

0500 
.650 
A42 
9653 
.718 
700 
715 
795 

-- 
------ 
o .0281 

-0376 
*0331 
90391 
.0494 
00391 
.0492 
-0395 
.0626 
.0621 
.0630 
.0522 
.0618 

15 
16 
17 
18 
19 
20 

7.88 
7.88 
7.88 
7.88 
7.88 
7-88 

o .0326 
.0326 

.o 326 

90325 

.0321 

.0325 

63 .o 
63 .o 
63 .O 
63.0 
63 .o 
63 .o 

0550 
.68 j 
.944 

----- 
‘0.505 

.649 

.pi 
794 
783 

------ 
0.0327 

00334 
.0328 
.0510 
.0634 

0 

78.4 
16.5 

15 3 
234 
477 
50 3 
633 
824 

1050 
1290 
1570 
1590 
4 180 

0 
53 04 

14  7 
, 484 
1390 
4540 
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Section A-A 
(a) Specimen with one 

s t i f fener .  

f 
C 

A17S-T r i v e t s  
spaced 1 inch 

S ti f f ener si ze 
and at i f fener  
r ivet ing  varied - 
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3 
C 

U L0.032 

Section C-C 
( b) Specimen with two 

s t i f f ene r s . 
Figure 1.- Test specimens. (All dimensions a r e  in  inches.) 
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Figure 2.- Photograph of test  setup. 
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-03 .04 05 .06 0 . 01 .02 

Shear deformition, in. 

Figure 4. - Typical load-deformation curve for  shear webs. 



NACA m NO. 1589 41 

0 Test results 

(e,-&, (er) Computed shear buckllng load fqr clamped 
and simply supported edge condifioq mspecfively 

24 

De via /;on squored Scale I-----+ 
0 80 x /68 

(a) Webs  with one stiffener. 

Figure 5.- Comparison of test results and theory on the shear buckling 
load of long flat plates with longitudinal stiffeners, identical and 
equally spaced. 
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0 Test resulfs 38.8 
(&J , (er& 

28 

Computed shear bucklin load for clamped 
aod simply supparted e 2 ge coodhon, respc five$ 

24 

&vluf/bn squared &ole I-----+ -8 
0 BOX IO 

(b) Webs of two stiffeners. 

Figure 5. - Concluded. 
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Locations of stiffeners 
( for clarity, only two 
are indicated) 

--- 

Figure 6.- Coordinate system used in  theory for simply supported plates. 
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Figure 9.- Coordinate system used in  theory for clamped plates. 
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